Gravitational Waves

Physicists Umberto Cannella and Daniel Whiteson explain what gravitational waves are and why they'll cause a big ripple in our understanding of the Universe. (Credit: PHD Comics)

Gravitational waves are a key prediction of general relativity, a theory proposed by Albert Einstein in 1915 that is still our best explanation for the force of gravity. Einstein pictured space and time as interwoven aspects of the same underlying reality, known as space-time. Objects that possess mass, such as stars and planets, warp space-time much like how a heavy ball placed on a trampoline creates a bowl-like depression around itself. This curvature in the space-time trampoline, so to speak, is experienced by all matter in the universe as the force of gravity. Whenever any mass moves, it generates gravitational waves that ripple through space-time like ripples radiating across a pond's surface. For these waves to be big enough to detect, however, extraordinarily massive, astronomical objects are required, such as accelerating black holes or neutron stars. The ability to measure the strength and frequency of gravitational waves is important because such measurements would provide vital details about the distant, exotic phenomena that produced them.

Did a Starry “Mosh Pit” Spawn LIGO’s Gravitational Waves?

Much to their surprise, scientists are finding dozens of black holes deep within densely packed collections of stars called globular clusters. We spoke to three astrophysicists—Rainer Spurzem, Carl Rodriguez and Jay Strayder—who are using a record-breaking computer simulation, and other methods, to learn the clusters’ secrets, including whether they gave rise to recently observed ripples in space-time. 

2016 Kavli Prize in Astrophysics: A Discussion with Kip Thorne and Rainer Weiss

Aug 15, 2016
Two black holes merging

Two winners of the 2016 Kavli Prize in Astrophysics, Kip S. Thorne and Rainer Weiss, discuss the impact of discovering gravitational waves with the enormous detector they spent more than 40 years developing.

Ripple Effect: Gravitational Waves Begin to Reveal a Hidden Universe

Feb 11, 2016
A visualization of a supercomputer simulation of merging black holes sending out gravitational waves. (Credit: NASA/C. Henze)

Three principal researchers at the Laser Interferometer Gravitational-Wave Observatory (LIGO)—Nergis Mavalvala, Rainer Weiss and Matthew Evans—reflect on the epic discovery of gravitational waves and how it will transform the way we see the cosmos.

Planck Space Telescope Brings Early Universe into Focus

Feb 16, 2015
Planck space telescope

The latest data release from the Planck space telescope offers insight into everything from the fabric of space to dark matter – and may even have a shot at detecting gravitational waves, says Kavli Institute for Cosmology Director George Efstathiou.

Instantaneous Cosmic Growth: Have We Found the Smoking Gun?

May 19, 2014
Gravitational waves

Scientists have announced we may now have the first “smoking gun” evidence that the universe expanded with unmatchable speed in its earliest moments. Three theoretical physics consider the implications of this stunning development.

Nano Meets Astro: A Dialogue with MacArthur Recipients Michal Lipson and Nergis Mavalvala

Jan 02, 2011

A conversation with Michal Lipson of Cornell University and Nergis Mavalvala of MIT, 2010 MacArthur Fellowship winners, on the intersections between nanoscience and astrophysics.

Primordial Portrait of the Universe

Jul 14, 2010
Planck space telescope

Central to the science of cosmology is the zeal to build better time machines. These are not designed literally to travel to the distant past, of course, but to get a better look at it. The latest of these is the Planck Surveyor satellite. 

Chao-Lin Kuo Heads South

Apr 01, 2009
Chao-Lin Kuo

To get to the South Pole, first take a commercial flight to Christchurch, New Zealand, then catch a special military flight to McMurdo Station, a large outpost on the Antarctic coast. From there it's a three-hour flight to Amundsen-Scott South Pole Station. 

Subscribe to RSS - Gravitational Waves