Afterglow: Dispatches from the Birth of the Universe

Renowned physicists Lawrence M. Krauss, John C. Mather, Amber Miller, Lyman Page and David Spergel discuss cosmic background radiation

The Researchers

Lawrence M. Krauss
John C. Mather
Amber Miller
Lyman Page
David Spergel


COSMOLOGY IS ONE FIELD in which researchers can—literally—witness the past. The cosmic background radiation, ancient light streaming toward us since the Big Bang, provides a pristine window onto the birth and evolution of the universe. Already, the radiation has been key to confirming an early explosive expansion of space, determining the geometric shape of the universe and identifying seeds that resulted in galaxies. Now, the cosmic background radiation is poised to reveal when the first stars formed, what happened in the fraction of a second after the Big Bang, and the answers to a host of other bold questions about the cosmos.

In this video, renowned physicists Lawrence M. Krauss, John C. Mather, Amber Miller, Lyman Page and David Spergel discuss the state of this research during a major public presentation at the 2012 World Science Festival. The program is part of “The Big, the Small, and the Complex,” a World Science Festival series made possible with support from the Kavli Prize.

About the Participants

John C. Mather

Internationally known theoretical physicist and best-selling author Lawrence Krauss has focused his research on the intersection of cosmology and elementary particle physics. Krauss’s work addresses questions about the origin of matter in the universe, Einstein’s theory of general relativity, astrophysics, the future of the universe and the properties and description of the dark energy that is thought to account for most of the universe’s present energy content.

A fervent advocate for science literacy, Krauss has written nine books for a general audience, including the bestseller The Physics of Star Trek, and most recently A Universe from Nothing, which appeared in January of 2012. He was recently awarded the National Science Board’s 2012 Public Service Award for his contributions to public understanding of science. Krauss is Foundation Professor in the School of Earth and Space Exploration and Director of the ASU Origins Project at Arizona State University.

John C. Mather

As a postdoctoral fellow at the Goddard Institute for Space Studies, Mather led the proposal efforts for COBE. Later, he and his team showed that the cosmic microwave background radiation has a blackbody spectrum within 50 parts per million, which helped confirm the Big Bang theory of the universe. For this work, he received the Nobel Prize in physics in 2006, along with George Smoot. According to the prize committee, “the COBE project can also be regarded as the starting point for cosmology as a precision science.”

Mather is senior astrophysicist at NASA’s Goddard Space Flight Center in Maryland, and the Senior Project Scientist for the James Webb Space Telescope, the powerful successor to the great Hubble Space Telescope, planned for launch in 2018.

John C. Mather

Amber Miller leads the Columbia University Experimental Cosmology group dedicated to studying relic signatures from the Big Bang with the goal of understanding the origin and evolution of the universe. Specifically, the team studies the Cosmic Microwave Background (CMB) and the Sunyaev-Zel'dovich Effect (SZE) using sensitive centimeter and millimeter-wave instruments designed specifically for this work. The Columbia team designs, builds, deploys, and analyzes data from novel telescopes employing cutting edge technology, much of which is piloted and tested by the group.

The QUIET and EBEX experiments are designed to probe detailed physics in the universe when it was much less than one second old. The first QUIET camera, built at Columbia, recently observed the CMB from 17,000 ft. in the Atacama desert in Chile. The EBEX experiment is currently being integrated at Columbia's Nevis laboratories for it's Antarctic flight from a high-altitude balloon.

Lyman Page

Physicist Lyman Page measures the cosmic microwave background radiation left over from the Big Bang to better understand the very early universe and how it has since evolved. He is the Henry DeWolf Smyth Professor of Physics at Princeton University whose many honors include being a co-recipient of the Shaw Prize and the Gruber Cosmology Prize.

David Spergel

David Spergel studies the big questions in cosmology and astrophysics: How large is the universe and what is its shape? Is it finite? What are the dark matter and dark energy that comprise most of the universe’s mass? How did our galaxy form and evolve? Do nearby stars harbor planets like our own Earth, and did life originate on Earth or come from those nearby stars?

The Charles Young Professor of Astronomy and Chair of the Department of Astrophysical Sciences at Princeton University, Spergel is best known for his work as a member of the science team for NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) mission, which maps out the universe’s cosmic microwave background radiation. Spergel used WMAP data to determine the age of the universe, the density of matter in the universe and how it fluctuated to form the first galaxies. His published papers on those subjects have been referenced by other scientists more than any other physics research in the new millennium.

Spergel received his Ph.D. from Harvard University and joined the Princeton faculty in 1987. He is a member of the National Academy of Sciences and has been awarded the MacArthur Fellowship, the Shaw Prize, a Sloan Fellowship and the Presidential Young Investigator award. In 2001, TIME Magazine listed Spergel as one of America’s top scientists.


  • Home
  • News & Events
  • Staff
  • Contact
The Kavli Foundation
The Kavli Foundation

Advancing science for the benefit of humanity.

  • Terms of Use
  • Privacy Policy
  • Creative Commons License

Copyright © 2021 The Kavli Foundation